
Journal of Statistical Physics, Fol. 75, Nos. 5/6, 1994 

A Remark on the Decay of Superconducting 
Correlations in One- and Two-Dimensional 
Hubbard Models 

N i c o l a s  Macr is  ~ and Jean  Ruiz  2 
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Upper bounds on the decay of various correlation functions are derived for a 
general class of itinerant fermion models with long-range hopping matrix. These 
bounds extend previous results of Koma and Tasaki and rule out the possibility 
of magnetic ordering and condensation of superconducting electron pairs in one 
and two dimensions for finite temperatures. 
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The absence of  spontaneous breakdown of continuous symmetry in one- 
and two-dimensional classical and quantum statistical mechanical systems 
is a well-known phenomenon (see, e.g., refs. 2-4). For  the Hubbard  model 
(see ref. 5 for a recent review of rigorous results), which has a global SU(2) 
symmetry,  Walker and Ruijgrok t6~ and then Ghosh  tT~ proved the absence 
of magnetic ordering at finite temperatures, using the Bogoliubov 
inequality. More  recently, K o m a  and Tasaki tl~ extended the McBryan -  
Spencer method tSI to a general class of Hubbard  models with finite-range 
hoppings. Making use of the global U(1 ) gauge symmetry of any quantum 
system conserving the particle number,  they proved the absence of off- 
diagonal long-range order ( O D L R O )  corresponding to the condensation of 
superconducting electron pairs (such as Cooper  pairs). 

In this note, we exend the results of ref. 1 to the case of an infinite- 
range hopping rna[rix. Let us remark that the tight-binding approximation 
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underlying the models leads naturally to a hopping matrix with infinite 
range and exponential decay. Our results in Theorem 1 (see also the second 
remark after the proof of the theorem) cover this case. 

We state the bounds and give their proof explicitly for the case of 
off-diagonal correlation functions. The same holds also for spin-spin 
correlations. They are based on the McBryan and Spencer bound proved 
in ref. 1 to which we apply the estimates of Messager et al. 19) The case of 
random hopping is also considered. 

We consider on the (d~<2)-dimensional lattice Z d, an itinerant elec- 
tron model with Hamiltonian 

H = -  E ', .... }) (1) 
x, y e Z  a a =  LI 

Here (t,:,,) is the hopping matrix, cx,§ and c,, .  are the creation and 
annihilation operators with Fermi statistics, and the interaction V({nx.~}) 

.. - -  + We is an arbitrary function of the number operators n ~ - c  .... c .... . 
introduce the expectation of an arbitrary observable A as < A > =  
T r A e - P I H - J ' m / T r e  -t~tn-um, where # is the chemical potential and 
N=Zx ,~ ,  nx., is the total number operator. <A > is to be interpreted as the 
thermodynamic limit A T z d  of the corresponding finite-volume expression 
<A>A where the sites are restricted to a finite box A. The following 
theorem sets bounds on the correlations between the superconducting 

_ + + A v = C y ,  t C y , t .  order parameters zl~ + -C,,rCx. ~, . 

T h o o r o m  1. (a) I f d = l  and I tu~l<~t/lu-vl  ~ w i t h c t > 2 , t h e n  

Co 
< A.+~ dy + h.c. > ~< i x _  yl2(~_ ,1 (2) 

(b) If d =  1 and It,,,I ~< t / ( l u -  vl 2 log Ipl l u -  vl), then 

CI 
<A ~+ Ay + h.c. > ~< (logCP I Ix -Yl  );.~al (3) 

(c) If d = 2  and It~vl <~t / lu -o l  ~ with ct>4, then 

C2 
<d + A ,. + h.c. > ~< Ix -Yl  ;.2ct1~ (4) 

(d) If d = 2  and I t u v l ~ t / l u - v l  4, then 

C3 
< A+Ay + h.c.> ~< (log Ix-yl)~3tP~ (5) 
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(e) If d = 2  and It,,,I ~<t(log 121 l u - v l  .--log Ipl l u - v l ) / l u - o l  4, then 

C4 
(A ,.+ Ay + h.c. ) ~< (loglpll x -Yl  );"1#~ (6) 

where t, Co, CI, C2, C3, and C4 are positive constants and )-1, 22, 23, and 
24 are nonincreasing functions of fl proportional to f l- i  for large ft. In (3) 
and (6), log tp) denotes the p-times iterated logarithm. 

Proof. Formulas (6) and (10) and the first inequality of ( 11 ) in ref. 1 
give 

(/l+,a.,.+ h.c.)~<exp {-2(~ox-~o, . )+f l  ~ It,,,,I [cosh(~o,,- ~o,,)- 1]} (7) 
it, t, 

where {~o,,} is an arbitrary family of real numbers. They are related to the 
gauge transformation 

C + + A + e x p ( - -  ~ o  . . . . .  c , ,+)Aexp(~ouc, , . , ,c , , . , , )  (8, 

which plays, in the case under consideration, the rote of the complex trans- 
lation of ref. 8. The right-hand side of (7) has been estimated by a suitable 
choice of the variables ~o,, according to the different hypotheses on t .... to 
obtain upper bounds on the decay of two-point correlation functions of 
SO(N)-symmetric spin systems/9~ We thus refer to ref. 9 (see Sections 2 
and 3) to conclude the proof. | 

Remarks. I. Koma and Tasaki proved the decay given in 
statements (a) and (c) of Theorem 1 in the case of finite-range hopping 
matrix: ]tx.,,I = 0  if r x - y l  > R ,  where R is some constant. They already 
mentioned that the case of long-range hopping could be treated by their 
techniques using the result of Ito. c~m However, the treatment of the 
McBryan-Spencer bound given by Ito leads to much slower decay than 
those obtained from the estimates of Messager et alJ 91 proposed here. 

2. In dimension d =  1, it can also be shown that power law decay 
holds for small fl when It~L,I ~<t lu--vl -2. Moreover, exponential decay 
holds for all fl when t~,, decays exponentially. 

3. The bounds of the theorem hold also for the correlations 
(c.~, c,., + h.c. ), except in case (a), where the decay goes like I x -  Y l-  c=- ~1 

4. The infinite-volume limits of the free energy and the pressure exist 
for the models under consideration if It,v[ <~tlu-vl-=,  ct > d. This follows 
from standard arguments in the theory of the thermodynamic limit. Here 
we tacitly assume that it is also the case for the correlation functions. 
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We now consider the case of random hopping. Obviously the bounds 
given in Theorem 1 immediatly extend to this case, but we can obtain 
decaying bounds even if d <  e < 2d, thanks to methods used for classical 
spin-glasses. (~') 

T h e o r e m  2. Whenever t.o=~,,o lu-uI-L where ?',,, are bounded 
i.i.d, random variables with zero mean, then: 

(a) If d =  1 and ~>  1, there is a positive random variable f({~'~v}) 
which is finite almost surely such that 

1 
(A.~ zJ,. + h.c. )({ ?,,,, })~< f({ 7,,v })ix_yl(2=_~) (9) 

(b) 
exists a sequence of random variables FN such that for I x - y ]  = N 

- l o g  [ (a.+d.,. + h.c. )l >1 Ftr (10) 
with 

lim F-----E---N - K in L-'-sense (11 ) 
Jr- ~ (log N) ~' 

If d = 2  and a > 2 ,  then for all 0 < K < e - I  and y < l ,  there 

Proof. From the second inequality of formula (10) in ref. 1 and the 
variational principle (or Peierls inequality(4)), we get 

Tr e - ~ ( H ' - ~ N I  
( A )  ~<e -'-(~'- ~-') 

Wr e-  t~(u-,,N) 

~<exp -2(~ox-~o. , . )+fl~ t.v[cosh(q~,,-~ov)-1](c..~c,,.~) (12) 

where H'  is the Hamiltonian with modified hoppings t',o = t,,, cosh(~o,, - q)o) 
and ( - ) '  is the expectation with respect to this modified hopping. As in 
ref. 11, it is sufficient, for d =  1, to prove that 

=E }-" 1 } < o o  (13) }_ { 
where F is the expectation with respect to the hoppings 7.v. 

Since, by the Schwartz inequality, E{ IF..o JCvl } ~< (":{(L~ -go02}) '/2, 
one needs to bound a diagonal part Z.~ E{X~} and a nondiagonal part 
ZU.k~:O-ek~f-{XoXk~ }. For the diagonal part each term is bounded as in 
ref. 11 by 

E{7~,,} [cosh(~p.-~o~)- 1] 2 
lu_ol2= (14) 
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because of + ' I ( c . . . c o . . )  I~< 1. Indeed (for finite volume) 

ITrc+~co~e-alu'-~m I<<. c + c e -a~n'-"m �9 , u a  v . ~  1 

~< Tr e - I J { I t ' - ug~  

where 11" II~ is the trace class norm and II-II o~ the operator  norm (cf. ref. 12). 
For  the nondiagonal  part  we use the Dyson expansion 

e - a ' n ~ 1 7 6  fo' fi"-' dsl ds2"" ds. 
n ~  I 

x e - S " H ~  -~s"-~ - s " ) H ~  1 . . .  H ~ e  - ~ t ~ - ' ' l n ~  (15) 

where 

n o =  - X X t',,o:,,,o,,.o+ v({ .  . . . .  }) 
x , y # i j ,  k l  a =  "f,J, 

H I -  ' + , + - -  tijci,  aCL a + tklCk,aCLa 

(16) 

(17) 

This leads to a convergent series for (ci+.cz.) ' (c,+.cl..) ' in powers 
of t'0 and tkV Since ~_{t~Jk~}=F(?o. } IF{tk~}=0, for any integer n, all the 
first-order terms disappear and each term of the nondiagonal  part  can be 
bounded by 

C IF{7~} IE{?kzt} [cosh2{~oi - r  ~oj)] 
l i - j l  z" Ik - l l  2" 

X [cosh2(~0k - -  q~I) - - c o s h ( q ) k  - -  tp/)]  (18) 

We choose r - r = (~ - 1 ) ~ ' =  t J -  1 when Iz - xl = n and conclude the 
proof  of the one-dimensional case by the estimates of ref. 9. 

For  the two-dimensional case we use the choice of Picco, "3~ r - rpx = '  
K ~ =  l ( j [max{1 ,  l o g j } ] l - O  - l  when z belongs to the square with sides 
of length 2n + 1 centered at x, and apply the estimates of ref. 9 to (14) and 
(18), which yields, instead of (13), 

~_ { ~ X~o t<.O((logN)Z~'-')+Cte 
l t v  

(19) 

for any y < 1, and conclude the proof  as in Van Enter. "~1 II 
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